
I
I
i
i
I
I
i
I
!
!
i
I
I
i

I
!
II
I

-°" N8g/-28306

SAA Project Mid-Year Report 1985 Appendix H

MANUAL PAGES FOR SAGA SOFTWARE TOOLS

Carol S. Beckman

George Beshers

David Hammerslag

Peter A.Kirslis

tIal Render

Robert Terwilliger

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL

July, 1985

I
l,
I

I
I
Ii

II
II
il
i
i
I
i

It
i
i
I
I
I

DFBASE (1) UNIX Programmer's Manual DFBASE (1)

NAME

dfbase--setthe base versionforfindingdifferencesbetween SAGA parse trees

SYNOPSIS

dflaase (saga dlrectory_

DESCRIPTION

Dfbase setsthe base versionfor dfdifftouse. The saga directorycontainsthe filescreatedby epos.

The modified fieldsin the current filesare clearedand the parse treeiscopied to the base version.

The parse treemay not become the baseversionifitcontains errorsor parse suspensionpoints.

DIAGNOSTICS

Error messages are (hopefully)self-explanatory.

FILES

In the saga directoryfor which dfbaseisinvoked:

slon dfbasestr stringfilefor base version

sagalp parse tree for the version being edited
for the version being edited

SEE ALSO

dfdiff, dfundo

IDENTIFICATION

Carol Beckman

BUGS

Dfbase will change in the near future with little notice.

dfbaseparse parse tree for base ver-

dfdebug debugging output

sagals stringfile

SAGA 5/15/85

DFDIFF(1) UNIXProgrammer'sManual DFDIFF(1)

NAME
dfdiff--display differences between SAGA parse trees

SYNOPSIS

dfdiff <saga directory> [<root or range>] [<context>] [<version>]

DESCRIPTION

Find the differences between the current version of the parse tree and an older, base, version.

The <root or range> argument tells which differences to print. If the argument is an integer, it

is taken as the root (nodeindex) of a subtree. If the argument is two integers separated by a colon,
it is taken as the beginning and ending locations (nodeindices) of the range in which to find

differences. Only differences in the selected part of the parse tree are printed. If no argument is

given, all the differences in the tree are printed.

The <context> argument tells how many lines of context to print around each difference. <con-

text> is an integer. A partial line adjacent to a difference counts as one llne. If no argument is

given, one is used.

The <version> argument is used to select the version of the difference command. <version> is

an integer. Currently only one version is available. This version is used if no <version> argu-

ment is given.

Dfdiff operates in screen mode or line mode. In line mode the differences will all print with no

further input from the user.

In screen mode, the differences are displayed one at a time. If a difference cannot fit on one screen,

the old and new parts of the difference each get half the space. The text can be scrolled so that all
the difference can be viewed. Control-L scrolls the parts forward, while control-H scrolls back.

The old and new parts can be scrolled individually by prefixing the command with control-O or
control-N for the old and new parts, respectively. So control-O control-L scrolls just the old part

forward. Control-N control-H scrolls just the new part back. Moving from one difference to the

next is accomplished with control-J and control-K. Control-J moves to the next difference.
Control-K moves back one difference. The default action is to move to the next difference. So if

any other key is hit, the next difference is displayed.

DIAGNOSTICS

Error messages are (hopefully) self-explanatory.

FILES

In the saga directory for which dfdiff is invoked:

sion dfbasestr string file for base version
the differences found dfdebug

for the version being edited sagals

SEE ALSO

dfbase, dfundo

IDENTIFICATION
Carol Beckman

BUGS

dfbaseparse parse tree for base ver-
dfdiffinfo information for

debugging output sagalp parse tree

string file for the version being edited

When called as a filter command from the SAGA editor, the first screen display is not always

correct. This affects further screen displays since only the new text is plotted and the replotter

assumes the first screen was properly displayed. This might be fixed now.

The field in the parse tree which is supposed to indicate whether a change has been made since the

last time dfdiff was executed does not get set by all changes. Thus dfdiff may not display the new

changes since it will reuse the old information, on the false assumption that it is current.

SAGA 7/28/85 1

II

l
I

II

II

I

II

_N

l
l

i
I
i

I
I
i
I
I
i

I
I
I

I
I
I

I
I
I

!
i

I
I

i
I

!
I
1
I

DFDIFF (I) UNIX Programmer's Manual DFDWF (I)

Ifdfundo isused to undo differences,but these differencesare not actuallyundone, dfdiffwillnot

displaythe undone differencesunlessthe parse treeismodified.

SAGA 7/28/85 2

DFUNDO (1) UNIX Programmer's Manual DFUNDO (1)

NAME

dfundo--generate commands for undoing differences between SAGA parse trees

SYNOPSIS

dfundo < saga directory > < diff# > ... < diff# >

DESCRIPTION

Dfundo generates the commands needed to undo a difference. Dfdiff must have been executed after

any changes to the parse tree and before dfundo is invoked. The <diff#>s are the numbers given
by dfdiff of the differences which are to be undone. One or more <diff# >s may be given for one
invocation of dfundo.

DIAGNOSTICS

FILES

Error messages are (hopefully) self-explanatory.

In the saga directory for which dfundo is invoked: dfbaseparse parse tree for base

version dfbasestr string file for base version dfdiffinfo information

for the differences found dfdebug debugging output sagalp parse

tree for the version being edited sagals string file for the version being edited

#dfundoexec file of commands to execute to undo differences

SEE ALSO

dfdiff, dfbase

IDENTIFICATION
Carol Beckman

BUGS

The commands generated by dfundo cannot be executed by epos with an exec command. It seems

that epos interprets the text for insertions as commands. The range syntax needed for the dele-

tions is not implemented.

Dfundo will report that a difference has been undone already even if the file of commands has not
be executed unless some change is made to the parse tree and dfdiff is executed again.

SAGA

I

I,
i

I
i

I

I
I

I

1

i
I

I

l
I

i
I
I
I

!

I
EPOS (1) UNIX Programmer's Manual EPOS (1)

I

I

I
i

I
I

I
,

I

I

I

I
i

i

NAME

epos -- language-oriented editor based on an LR(1) parser.

SYNOPSIS

epos [-1] [-P < parse-tables >] [-cdiimprstvx] < parse-tree > [< parse-tree >]

DESCRIPTION

Epos is an editor for languages based on formal BNF style grammars and LR(1) parsers. An edi-

tor can be produced for any language for which such a description exists. The editor provides
both text-oriented commands and additional structure-oriented commands, which are based on

the structure of the parse tree produced by the editor.

The editor incorporates an LR(1) style parser to perform syntactic and optional semantic analysis
of the program being edited. Each time the user completes an insertion or modification, the parse

tree is incrementally updated with the new information. The user of the editor is provided with

additional analysis during the editing process, and presented with immediate feedback about the

correctness of the input.

The amount of semantic analysisperformed (and whether any at alloccurs)isdependent both on

the parser-generatingsystem used toproduce the editor,and the type ofsemantic analysisdefined

in the input grammar file.

The editorisscreen-orlented,using the termcap facilityto adapt itselffor a particularterminal;a

linemode isalsoprovided. The SAGA editoruser manual provides a descriptionof editorcom-

mands. Information about the run-time environment of the editor,and itscommand lineoptions

and arguments ispresentedhere.

The command lineoptionsare:

-I Invoke the editorinlinemode insteadof screenmode.

-P Specifiesan alternatefile(-P<parse-tables>) from which to load the parse tables to be
used.

Since the editor is still an experimental prototype, a number of the available debugging options

are listed below to aid the individuals managing the implementation. These options can be

activated either by command llne flags or the on and offcommands of the editor. Users might find

them useful in formulating bug reports. The command line options for debugging are:

-b Turn on paging system debugging. Same as the "on db" editor command. If specified twice,

also enables detailed debugging.

-c Turn on command interpreter debugging. Same as "on dc'.

-i Turn on input and editor initialization debugging. Same as "on di'. If specified twice, also

enables detailed debugging.

-m Turn on make (incremantal recompilation) system debugging. Same as "on dm'.

-p Turn on parser debugging. Same as "on dp'.

-r Turn on parser initialization and recovery debugging. Same as "on dr".

-s Turn on debugging of the semantic analysis phase of the parse. Same as "on ds'.

-t Turn on debugging of the parse tables (used in the editor's language dependent module

only). Same as "on dt'.

-x Turn on debugging of the lexical analysis phase of the parse. Same as "on dr'.

FILES

SAGA

saga/bin/epos:

cshell script to invoke the editor,

saga/obj/editor/< language > .mystro/epos:

24 July 1985

EPOS (1) UNIX Programmer's Manual EPOS (1)

the actual editor process,

saga/obj/editor/< language > .mystro/parse.tables:
the binary parse tables,

saga/obj/editor/(language > .mystro/help.index:
index to on-line help file,

aaga/obj/editor/< language :> .mystro/epos.help:
on-line help file,

sagalsrcleditor llib lepos.cmds:
user-defined commands for all editors,

saga/src/editor/lib/epos. < language > cmds:
user-defined commands for this language,

(current-directory _/.epos. (language _ cmds:
the user's private user-defined commands for this language.

SEE ALSO

scat(l), dfbase(1), dfdiff(1), dfundo(1), rulecount(1).

AUTHOR

Peter A. Kirslis, Dept. Computer Science, Univ. Illinois -- Urbana, 1304 W. Springfield Ave.,

Urbana, Illinois, 61801. Written 1982, revised and extended 1983, 1984, 1985.

BUGS

The editor is still an experimental prototype. Some bugs still exist in the parser, although most

problems will be found in the screen-mode command interpreter. If a parse tree file is garbled by

the editor, its text representation can usually be recovered with the scat(1) command.

The second parse tree argument to the editor specifies an alternate parse tree to be accessed read-

only. Use of the alternate file is restricted to line mode, since the screen mode interpreter does not

yet provide any support for accessing it.

Multi-line comments are not yet supported in the editor. The lexical analyzer does recognize them

and store them properly, but the command interpreters and screen display do not yet handle them

properly.

SAGA 24 July 1985

I
I
I

I
I

i

I
I
I

I
I

I

I

I
I
l

I
I

i

I
l

I
I

I
I

I
I
I

I

I
I

I

I
I

I
i

I
I

MAKE (1) UNIX Programmer's Manual MAKE (1)

NAME

Make - maintain program groups

SYNOPSIS

Make [-f makefile] [option] ... file ...

DESCRIPTION

Make executes commands in make file to update one or more target names. Name is typically a

program. If no -f option is present, 'makefile' and 'Makefile' are tried in order. If make file is '-',

the standard input is taken. More than one -f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the target

was last modified, or if the target does not exist.

Make file contains a sequence of entries that specify dependencies. The first line of an entry is a

blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a

semicolon, and all following lines that begin with a tab, are shell commands to be executed to

update the target. If a name appears on the left of more than one -" then it depends on all of the

names on the right of the colon on those lines, but only one command sequence may be specified

for it. If a name appears on the left of a colon exclamation mark t! then it depends on exactly one

of the files on the right of the colon exclamation mark. The file choosen is the first one (left to

right) that exists, or the last one if none of them exists. If a name appears on the left of a colon

question mark .'? then it depends on all the files on the right of the colon question mark if they

exist. If a name appears on the left of a colon exclamation question mark t!? then it depends on

no more than one of the files on the right, if no file on the right exists, then it behaves like a t? . If

a name appears on a line with a double colon :: then the command sequence following that line is

performed only if the name is out of date with respect to the names to the right of the double

colon, and is not affected by other double colon lines on which that name may appear.

Three special forms of a name are recognized. A name like a(b) means the file named b stored in

the archive named a. A name like a((b)) means the file stored in archive a containing the entry

point b. Also a name like a,,J(b) refers to the RCS file of a with revision b. The revision may con-
tain symbolic names as defined in RCS. If the revision refers to a branch then the last member of

that branch is the revision chosen. Note: Using the modified ci command with -l or -u options the

modification dates of a revision and the working file are equal, i.e., neither one is considered to be
out of date with the other.

Sharp and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in turn

depend on '.c' files and a common file 'incl'.

pgm: a.o b.o

cc a.o b.o -lm -o pgm
a.o: incl a.c

ec --c a,e

b.o: incl b.c

cc -c b.c

Make file entries of the form

stringl = string2

are macro definitions. Subsequent appearances of $(,tringI) or ${strin91} are replaced by 8trineg.

If string1 is a single character, the parentheses or braces are optional.

The value of a macro may be edited before being replaced in the input stream. The syntax is

${stringl:modifier} where modifier specifies the edit to be made. If an edit fails a default value is
returned and a warning is sent to stderr. The modifiers are:

4th Berkeley Distrlbutlon 30 January 1985 1

MAKE (1) UNIX Programmer's Manual MAKE(l)

-a Which returns the archive file. Thus dirl/archive(member) becomes dirl/archive. If no (

exists then the argument is returned.

-e Which returns the extension if one exists or .junk otherwise. Thus ../dirl/root.el.e2

becomes .e2.

-h Which returns the head of the path name if a / exists in the argument, otherwise it

returns a '.' (current directory). Special case, if the path is the root name / then that is

returned. Thus dirl/dir2/name becomes dirl/dir2.

-m Which returns the member of an archive if a (exists, otherwise it returns its argument.

-R -R/.E/ The first case returns the "local" root of the path name, i.e., all the directories
and the extension are discarded. The second case appends the new extension to the former

result. Thus dirl/dir2/name.e becomes name.

-r -r/.E/This version retains the directories. In the example dirl/dir2/name is returned.

-t Which returns the tail of the path name if a / exists or its argument otherwise.

-s Which implements the Unix ed command s/pattern/replace/. If the pattern match fails

the argument is returned.

All of the modifiers work on lists of names by processing each name individually, i.e., the strings

are broken into lists of names based on space delimiters and each name is modified separately.

For each rule four special variables are set, $(&, $*, $<, and $?. The special macro $@ stands for

the full target name, $* stands for the target name with the suffix deleted. Both of these variables

may be used in the prerequisites list and the commands in conjunction with the editing operations

explained above. The macro $ <: lists the prerequisites that exist on the line with the commands,

and $? lists all the prerequisites that are out of date. The special variables can be used with the

modifiers discussed above.

Shell meta characters can occur in both target and prerequisite file names. When used in target

file names the pattern is used to find the rules associated with an actual target name. When a
match occurs the $(_ and $* variables are set to the actual target name, and the prerequisites are

processed. If a prerequisite contains a meta character the corresponding directory is searched and

any file which matches becomes an actual prerequisite. The standard glob(1) patterns have been
extended with the ** pattern which is like * but capable of matching a sequence of directories

when used in the target name.

Make can infer prerequisites for files for which the Makefile gives no explicit commands. For

example_ a '.c' file may be inferred as prerequisite for a '.o' file and be compiled to produce the '.o'
file. Thus the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -lm -o pgm

a.o b.o: incl

Prerequisites are inferred from a list of optional rules. Optional rules are distinguished by a :?

between the targets and dependent files. The optional rules only apply if the dependent file(s)

exists, and only one optional rule applies for a particular target. Thus order is significant; the
commands associated the first target pattern that matches target name and for which there exists

a dependent file are the commands used. For example, the rule for making optimized '.o' files

from '.c' files is

• .o :? $*.c

cc -c -O -o $@ $*.c

Notice the use of a shell meta character in the target file name, and the special macro $* to specify

the exact prerequisite desired.

4th Berkeley Diqtribntion 30 January 1985

I
I
I

I
I
I

I

I
I

I
I

I

I

I
I
I

I

I
I

!

I
MAKE(1) UNIX Programmer's Manual MAKE(l)

!

!

!

I

!

!

!

!

!

!

!

i

I

I
I

Certain macros are used by the default inference rules to communicate optional arguments to any

resulting compilations. In particular, 'CFLAGS' is used for cc{1) options, 'FFLAGS' for J'77(1)
options, 'PFLAGS' for pc(l) options, and 'LFLAGS' and 'YFLAGS' for lez and yacc(1) options.
In addition, the macro 'MFLAGS' is filled in with the initial command line options supplied to

make. This simplifies maintaining a hierarchy of makefiles as one may then invoke make on

makefiles in subdirectories and pass along useful options such as -k.

Command lines are executed one at a time, each by its own shell. A line is printed when it is exe-

cuted unless the special target '.SILENT' is in makefile, or the first character of the command is
'@'.

Commands returning nonzero status (see intro(1}) cause make to terminate unless the special tar-

get '.IGNORE' is in makefile or the command begins with < tab > < hyphen >.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on the

special name '.PRECIOUS'. All files ending in ,v or having the form ,v 0 are assumed to be pre-
cious.

Other options:

-i Equivalent to the special entry '.IGNORE:'.

-k When a command returns nonzero status, abandon work on the current entry, but con-

tinue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-r The predefined macros and default rules are not processed which saves processing time,
and protects the user from hidden intertactions. The special entry '.NORULES:' is

equivalent.

-s Equivalent to the special entry '.SILENT:'.

-q Test the prerequisites of a (single) target, and return a 0 status if the target is up to date
and -1 status if it needs to be remade.

-Q For recursive calls to make asking for the special status reports of-q. Notice that a posi-
tive status indicates an error in the child make.

The most common use of make is in maintaining large programs. In the following example all the

.p files are stored in the directory ..//sre and all the .h are stored in the directory ..Jhdr and the
objects are going to be placed in this directory.

SrcDir --_ ../src

Srcs = program.p modulel.p module2, module3.p

Objs -----${Srcs:r,.o,}
program : ${Objs}

${PC} ${PFLAGS} ${Objs}-o program

${Objs} : ${SrcDir}/$,.p
${PC} ${PFLAGS} -c $<

${Objs} : ../hdr/:_..h

Notice that the object names were generated with the modifier r. The second rule should be con-

sidered a foreach object file generate the specified prerequisite and Pascal compile. The third rule
specifies that all the objects are dependent on all the headers.

We present two examples of using make to maintain RCS files. (Macros as defined above).

Rev = working

4th Berkeley Distrib,tion 30 January 1985 3

MAICJ_] C1) UNIX Programmer's Manual MAKE(l)

FILES

ResFiles = ${Srcs:s,.*,RCS/&,v(${Rev}),}

All : ${RcsFiles}

${RcsFiles} : $*.p

ei -u${Rev} $ <
After you are done editing the working files this make script automatically discovers which files

were actually touched, and checks them in. Note the use of a symbolic revision name.

program : ${Objs}

${PC} ${PFLAGS} ${Objs} -o program

${Objs} :? $*.p

${PC} ${PFLAGS} -c $<

${Objs} :? ${SrcDir}/$*.p

${PC} ${PFLAGS} -c $ <

**.p : ${SreDir}/acs/${@:t},v(working)
${CO} -r${Rev} $@ $<

This example searches two directories for the Pascal sources, first the current directory, and then
the SrcDir. However both sets of sources are dependent on the same RCS files.

An example of archive maintainance is

SRCDIR----- ../sre

INCLUDE _-/usr/include

SRCS----open.¢ close.e creat.c

archive.a: ${saCS:s,^).c$,system.o(1.o),}

ar rv arehlve.a ${?:m}

rm ${?:m}
ranlib archive.a

archive.a: ${INCLUDE}/system.h

archive.a(*.o):? ${@:m}
echo Using ${@:m}

*.o: ${,:s,.,,${SRCDIR}/&.c,}

${CC} ${CFLAGS} $<

archive.a(*.o):? ${${@:m}:s,).o,$ {SRCDIR}/1.e,}

${CC} ${CFLAGS} $<

Maketd:
Maketd-mMakefile-Asystem.o-s${SRCDIR} ${SRCS}

Notice that the ar command is executed once with all the .o files which are out of date, avoiding

some overhead.

The macro ${MAKE} is recognized as the current make command, and treated specially. It is

called with ${MFLAGS} as arguments, and also called when the -n option is in effect. When
Make is called from Make a return code is requested and examined to see if the target was remade.

makefile, Makefile

SEE ALSO

sh(1), touch(I), f77(1), pc(l), Maketd(1)

BUGS

Some commands return nonzero status inappropriately. Use -i to overcome the difficulty.

Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines in

fl%ake.

4th Berkeley Distribution 30 .January 1985 4

i

I

I
I

I
t
I

I
!
I

!

I

I

I
!

I
I

!
I

I

t

I

I
l
I

I

I
i
I

t

I
I

I

i
I
i

I

RULECOUNT (1) UNIX Programmer's Manual RULECOUNT (1)

NAME

rulecount -- a SAGA parse tree analyzer

SYNOPSIS

rulecount [options] countfile [sagafile ...]

DESCRIPTION

Rulecount is a program which counts the uses of production rules in a SAGA parse tree. A report

is produced on the standard output giving the indices of the rules found and their corresponding

multiplicity. Various options may be invoked to produce different reports. The counts are stored

in the file given as the countfile on the command line, and these counts can b_ accumulated over

several runs of the program. This allows one, for example, to run the program with a test suite

for a given set of editor files and determine whether all rules have been used or, if not, which ones

have not. Each saga]ile is a directory produced by a SAGA language-oriented editor, and from 0
to 32 files may be given on the command line. If no sagafile is given, the countfile is analyzed and

a summary report is produced for the values stored in it.

Ruleeount first performs a traversal on the SAGA parse tree file from an input SAGA editor direc-

tory, saving the counts of the rules used in the countfile, either creating a new file if one does not

exist, or adding the counts to the countfile if one does exist. The program performs a traversal on

each SAGA parse tree file on the command line, accumulating the results in the countfile. On

completion of all the traversals, a summary report is produced for the accumulated counts, includ-

ing the counts which existed, if any did, in the countfile when the program was run. Various

options can be used to control the analysis and the report produced:

-oN inform ruleeount of the index, N, of the origin rule of the grammar which the particular

SAGA editor used in producing the parse tree file.

-rN inform rulecount of the index, N, of the maximum rule of the grammar which the particu-
lar SAGA editor used in producing the parse tree file.

-rN include in the output report 0nly those rules which occurred N or more times in the input

file. This defaults to 1 if this option is not used.

-i generate a report for each SAGA file in addition to the summary report which is always
produced. This allows one to see which files used which rules. A few additional statistics

are included in the individual reports, such as a count of the nodes and their types as

found in each SAGA file, as well as the maximum depth reached in the traversal stack.

This last value may be used to gauge the depth of the parse tree.

-p print the percentage of the grammar rules used in a particular parse tree. To use this

option, the -o and -r options must also be used (for obvious reasons). If the -i option is

on, the percentage used by each parse tree as well as the total percentage covered by all
are reported.

-z display only those rules which have not been used (have a count of zero). It is recom-

mended that the -r and -o options be turned on when using this, so that the program

knows what the upper and lower bounds of the grammar rules are. Otherwise, it only
gives those rules which lie between the current minimum and maximum rules found.

-t trace the traversa/ of the SAGA parse trees. This is primarily a debugging option, and is

recommended only as a last resort, as it produces scads of output (a single line for each
node of a parse tree).

-h display the usage line and the list of available options for the program. This information

is stored in the file 'help.rulecount' in the saga/src directory containing the program
source.

SAGA 4/25/s5 1

RULECOUNT (1) UNIX Programmer's Manual RULECOUNT (1)

DIAGNOSTICS

Errors in the arguments to rulecount are flagged, and conditions which violate the integrity of the

report are also checked, such as the occurrence of a rule whose index is greater than that given in

the -r option. Most of these errors cause the program to halt immediately. As intermediate

counts are written out to the countfile after each parse tree has been traversed, the contents of the

countfile may be corrupted by spurious input. Some attempts have been made to indicate where

the error occurred, thoUGH these may not always be sufficient for full debugging.

FILE MODES

The user must have read/write permission on the countfile and read permission on the SAGA

file(s) on the command llne.

FILES

"saga/bin/rulecount -- the executable program file "saga/src/utilities/rulecount -- the source

directory "saga/lib/help.rulecount -- the help file

IDENTIFICATION

The author of this program was Hal Render, currently working for the University of Illinois. All

problems and suggestions for improvement should be addressed to him. His current address is:
Hal Render

222 Digital Computer Lab

University of Illinois

1304 W. Springfield

Urbana, Illinois 61801

(217) 333-7937

BUGS

The program does not currently check to see if the input SAGA files come from the same editor or
even the same language. The user must take care not to mix files from different editors or

languages, if he/she wishes an accurate report on the parse tree files. This program has not been

tested very rigorously, and is thus subject to error. If any problems are found, please contact Hal
Render.

SAGA 4/25/85 2

I
I

I
I

I
I

I

I

I
I

I

I

I

I
i

l
i

I

l

I

l
i

I

!

I

l

I
I
I
I

I
I

I
I

I
I
I

I

SCAT (1) UNEK Programmer's Manual SCAT (1)

NAME

scat -- catenate and print the text from SAGA parse tree directories.

SYNOPSIS

scat <parse-tree-directory> [<parse-tree-directory> ...]

DESCRIPTION

Scat produces the source text representation of a SAGA parse tree on standard output. If more

than one parse tree is specified, the output will contain the text from each tree, in the order that

the arguments were supplied. Scat operates by traversing only the frontier of the parse tree, so
it may be used to extract the text from parse trees containing discontinuities (suspension points
and errors). It also can recover the text from parse trees whose internal structure has been

scrambled, as long as the frontier is intact (which is usually the case when a parser bug in the
editor occurs).

SEE ALSO

epos(1)

AUTHOR

Peter A. Kirslis, Dept. Computer Science, Univ. Illinois -- Urbana, 1304 W. Springfield Ave.,
Urbana, Illinois, 61801. Written February, 1985.

SAGA 24 July 1985 1

sem_create(1) UNIXProgrammer'sManual sem_create(1)

NAME

sem_create - create a semaphore

SYNOPSIS

°saga/bln/sem._create semaphore_name

DESCRIPTION

sere. create creates a semaphore to control interprocess communication. The semaphore is

implemented with a file. To create a semaphore, execute sem_create and provide a name for a

semaphore. The name of the semaphore should have the suffix .sere. sem create creates a file

named semaphore_name.

DIAGNOSTICS

sem_create will print an error message if more than one argument is given or if the argument
does not end with .sem.

SEE ALSO

sem_intro{1), sem_destroy(1), sem_p(1}, and sem._v(1). A C interface is described in

sem_C_int(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAOA 7/25/85 1

I
I

I
I

I
I

I
I
I

I
I
I
I
I
I

I
I
I

I

I

l

I

I

i

l

I

I

I

I

!

l

I

I

I

I

I

I

sem_destroy { 1) UNIX Programmer's Manual sem_destroy (1)

NAME

sem_destroy - destroy a semaphore

SYNOPSIS

"saga/bln/sem destroy semaphore_name

DESCRIPTION

sere_destroy destroys a semaphore. To destroy a semaphore, execute sere_destroy with the
semaphore name as the only argument. The name of the semaphore should have the suffix
,selrl,

DIAGNOSTICS

sere_destroy will print an error message if more than one argument is given or if the argument
does not end with .sere.

SEE ALSO

sem_intro(1), sem_ereate(1), sem_p(1), and sem_v(1). A C interface is described in sem_C..int(2).

IDENTIFICATION

Bob Terwilliger, UIUG DCL Urbana, Ill. 61801. Phil Roberts, UIUG DCL Urbana, Ill. 61801.

SAGA 7]25/85 1

sem_p(1) UND[Programmer's Manual sem_p (1)

NAME

sem_p - perform a P operation on a semaphore

SYNOPSIS

"saga/bin/aem._p semaphore_name

DESCRIPTION

aem__p performs a P operation on a semaphore. If a P operation has already been performed on

the semaphore, the new P operation will block. The name of the semaphore should have the

suffix .sere. The P operation is performed in the following manner. An flock is performed on

the file that represents the semaphore (the file is created by sem_create). If a P operation has

already been performed, the flock will block. The process now attempting the P will remain

blocked until the process holding the flock is killed.

When the flock succeeds, a new process is forked to hold the flock. The PIT) of the new process

is written in the semaphore file and the process goes to sleep. The corresponding V operation

reads the PID from the semaphore file and kills the process holding the flock allowing the next

process to perform its P operation.

DIAGNOSTICS

sem_p will print an error message if more than one argument is given or if the argument does
not end with .sem.

SEE ALSO

sem_intro(1), sem._create(1), sem_destroy(1), and sem_v(1), i C interface is described in

sem_C int(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/2.5/85 1

I

I

I

i

!

!

i

I

I

I

l

I

!

I

I

I

I

!

I
!

I
!
!

!
!
I
!
!
t
!

I
l
!

I
i
a

TED (1) UNIX Programmer's Manual TED (1)

NAME

ted, browse, peg - a family of prototype tree structure editors

SYNOPSIS

ted [< filename >]

browse [<filename>]

peg [< filename >]

DESCRIPTION

These are a family of closely related editors for editing unrestricted trees. Each of these editors is

unique, although they share a common editor core and common editing features. Each editor con-

sists of the (slightly tailored) editor core, and packages of external programs that operate on the

tree constucted by the editor. The basic paradigm of ted editing is: the user constructs or
modifies trees using the editor, then from within the editor, invokes external programs to certify

that the tree maintains its desired properties. The user is encouraged to create his own external

programs to suit his particular needs.

DIAGNOSTICS

Ted-based editors are chocked full of self-explanatory error messages.

FILES

.tedrc ted initialization file (lisp commands)

SEE ALSO

Since the ted editors are prototypes, they are rapidly changing; however the most comprehensive
document is "Ted: a Tree Editor with Applications for Theorem Proving", by David Hammerslag.

The uiucdcs local notesfile "ted" is a good source for up-to-date (tho less comprehensive) informa-
tion.

IDENTIFICATION

David Hammerslag uiucdcs!hammer

BUGS

Being prototypes these editors are problably loaded with bugs.

There is very little hard documentation on any of the editors except ted.

University of Illinois 4/25/85 1

sem_create(2) UNIX Programmer's Manual sem_create (2)

NAME

sem_create ° create a semaphore to control access to a file

SYNOPSIS

#include "~saga/src/sem_C_int/sem_C_int.h" #include "~saga/src/msc/msc.h"

int rtrn ;

int sem create(file_name,semaphore,argc,argv) char filename[] ;char semaphore[] ;int argo ;

char *argv ;

ec * -saga/src/sem_C int/sem_C_int.o -saga/src/sem_C_int/msc.o

DESCRIPTION

sem_create creates a semaphore to control access to a file. The semaphore controls access to

file_name, semaphore receives the name of the semaphore when sere_create is done. The
name of the semaphore is file. name with .sere concatenated to the end. sem...create executes

the system program ~saga/bin/sem._create to create the semaphore, semaphore is the name of
the file used for the semaphore. In other words, this function executes the command

"sem create semaphore".

DIAGNOSTICS

rtrn gets the return code from the system call to execute sem._create.

SEE ALSO

sem._create(1), sem._destroy(2), sem p(2), sem_v(2).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/25/85 1

!

I

!

I

!

l

a

!

I

n

I

D

I

!

!

I

I

I

!

I

i

I
I

I
I

I
I
I

I
I

I
I

I
I
I

I

sem_destroy (2) UNLX Programmer's Manual sem_destroy (2)

NAME

(3 interface to semaphore routines.

SYNOPSIS

#include "-saga/src/sem_C..int/sem_C_int.h" #include "-saga/src/msc/msc.h"

int rtrn ;

int sem_destroy(semaphore,argc,argv) char semaphore[] ; int argc ; char *argv ;

cc * ~saga/sre/sem_C_int/sem_C_.int.o -saga/src/sem_C_int/mse.o

DESCRIPTION

sem_destroy destroys the semaphore created by The argument semaphore is the name of

the semaphore created when sem_create(2) was called.

DIAGNOSTICS

rtrn contains the return code from the system call.

SEE ALSO

sem_C_int(2), sem._create(2), sem_intro(1), sem_create(1), sem_destroy(1).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7/25/85 1

sem_p(2) UNIXProgrammer'sManual sem_.p(2)

NAME
sem_p- performaP operationona semaphore

SYNOPSIS

#include "~saga[sre/semC_int/sem_C_int.h" #include "-saga/sre/msc/msc.h"

int rtrn ;

int sem_p(semaphore,argc,argv) char semaphore[] ; int argc; char *argv ;

ee * ~saga[sre[sem_C_int[sem_C_int.o -saga/src/sem C_int/m.sc.o

DESCRIPTION

sem_p performs a P operation on semaphore. The function really, executes the command

"sem_p semaphore". A V operation can be performed on the semaphore by calling sem_v(2).

semaphore is the name of the semaphore created by calling sem_ereate(2).

DIAGNOSTICS

rtrn contains the return code from the call to system.

SEE ALSO

sem_C_int(2), sem_v(2), sem_intro(1), sere_p(1), sem_v(1).

IDENTIFICATION

Bob Terwiiliger, UIUC DCL Urbana, Ill. 61801. Phil Roberts, UIUC DCL Urbana, Ill. 61801.

SAGA 7]25/85 1

I

I

I

I

I

l

l

I
I

I
I

I

I
I
I

I
I
l

l

I
I

I
I
i
I

I

I

I
I
I

I
I

I
I

I
I
I

I

semj(2) UNIX Programmer's Manual _m.__(2)

NAME

sem_v - perform a V operation on a semaphore

SYNOPSIS

#include "'saga/src/sem_C_int/sem_C_int.h" #include "'saga/src/msc/mse.h"

int rtrn ;

int sem_v(semaphore,argc,argv) char semaphore[] ; int argc ; char *argv ;

cc * -saga/src/sem_C_int/sem_C_int.o -saga/src/sem_C_int/msc.o

DESCRIPTION

sem_v performs a V operation on semaphore. The function really executes the command

"sem_v semaphore". A P operation can be performed on the semaphore by calling sem_p(2).

semaphore is the name of the semaphore created when sem_create(2) was called.

DIAGNOSTICS

rtrn contains the return code from the call to system.

SEE ALSO

sem_C_int(2), sere_p(2), sere intro(1), sem p(1), sere_v(1).

IDENTIFICATION

Bob Terwilliger, UIUC DCL Urbana, Ilk 61801. Phil Roberts, UIUC DCL Urbana, I11. 61801.

SAGA 7/25/85 1

SYSintro (2) 1985 SYSintro (2)

NAME

Pascal to System interface.

SYNOPSIS

#include "/mntb/3/srg/saga/include/system.h" pc* saga/lib/system/system/system.o

DESCRIPTION

The purpose of these routines is to provide a standard interface from Pascal (the pc compiler) to

the Unix system. The idea is that the SYS library should be the only thing which needs to be

altered to port the Pascal portion of SAGA to System 5 or Xenix (I know, fat chance). There are

two essential differences between the Pascal and C versions of the system calls. First strings in

Pascal are passed as "systring", and converted to the C NULL terminated format internally.

Second pointers in Pascal must be typed. If the value of a pointer is required then the "ord0" of

that pointer returns an integer which agrees with the type address defined in system.h. Sadly,

there is not a well defined mechanism for going the other way. An undlscriminated variant record

is necessary to convert pointers to integers. Further, the slze of a record must be calculated by

calling a "Delta" function with two var parameters which are successive array elements. The func-

tion must be written in C and should define the arguements as integers. For Example:

function DeltaMyType(var lo, hi : MyType) : integer ;

external ;

int

DeltaMyType(lo, hi)

int lo, hi ;

{
return(hi - lo) ;

}

There are some other special types. The Unix file system sets permission codes for files. In the

header files these parameters are always called mode. The constants OtherExee_ OtherWrite,

.., GroupExec, -.90wnWrlte, can be added together to form the desired permission code. The

SYSaccess function has the testmode argument, which takes a sum of the AeeessExist,

AecessExec, AecessWrlte, and AecessRead constants. The SYSlseek function uses the Seek-

Absolute, SeekRelative, and SeekFromEnd constants (not added together). Finally, the

SYSopen function uses the constants OpenReadOnly, OpenWriteOnly, OpenReadWrite,

OpenNoDelay, OpenAppend, OpenCreat, OpenWrunc, and OpenExcl.

Normally the parameters of each SYS procedure correspond to the parameters of the C function.

The acceptions are the memory allocation routines, which return the pointer as a var parameter

rather than as a function result. Note: these procedures also had to be integrated into the Pascal

runtime environment, care should be taken when rewriting.

DIAGNOSTICS

Generally, error returns are the same as for G. SYSerror can be used to obtain a text description

of each error, providing there are no intervening SYS calls.

FILES
$

SEE ALSO

Associated C functions, and section 2 introduction.

IDENTIFICATION

George McA Beshers, UIUC DCL Urbana Ill. 61801.

1, July 1

I

I
I
I

I

I

I

I
I
I

I

I
I

I
I

I
I
I
I

I
I

I
I

l
I

I
I

I
I
|

I

I
i
l
l

I
I
l

SYSintro (2) 1985

BUGS

The systring type is currently limited to 126 characters which is somewhat small.

SYSintro (2)

1, -- July 2

AllocPermid(3) UNIX Programmer's Manual AllocPermid (3)

NAME

_ AlloePermid

SYNOPSIS

AlioePermld(
name: systring) : sypermidindex;

DESCRIPTION

This procedure allocates a permanent id for SAGA string and symbol tables. For this routine to
work the environment variable SAGA_INDEX_.FILE must be set the pathname of a writeable file.

The file is maintained in a format similiar to /etc/passwd. Specifically, the permanent id, colon,

and the full path name. Unfortunately, AllocPermid is no smarter than csh_ i.e., it is fooled by

symbolic links.

In practice this function need only be called when a new file is created. If the full path name
equals one already in the table, that permanent id is returned. Currently, the table size is lk, the

goal being support SAGA (editor, olorin, filters, ...) under SAGA. Another way to think of this is
that the SAGA_INDEX_FILE is a view of the SAGA system.

If an error occures a message is printed. Index 1024 is the error return.

DIAGNOSTICS

getwd failed.

Unix United not supported (path starts with/../).

getenv failed (SAGA_INDEX_FILE is not set).

SAGA Index File open failed.

FILES

File specified by SAGA_INDEX_FILE.

SEE ALSO

String.3, Richards Thesis.

IDENTIFICATION

Beshers, George. beshers@uiuedcs.

BUGS

Perhaps one should be the error return. One is a valid permanent id, thus the editor would keep

working in an improper environment.

SAGA 7/23/S5 1

!

l

!
I
I
I

!

!

I

I
l

!
!

i
!
!

!
I
!

I

I

I

I

l

I

l

I

I

I

l

I

I

i

l

I

I

I

l

STRING (3) UNIX Programmer's Manual

NAME

String Manager - String table management for SAGA.
o_

SYNOPSIS

****** String Table Routines ******

createstrlngtable(

name: systring;

permid: sypermidindex;

mode: integer;

var rootcontext: contexttag;

var error: boolean);

openstrlngtable(

name: systring;

var permld: sypermidindex;

var rootcontext: eontexttag;

var error: boolean);

elosestr|ngtable(

rootcontext: contexttag;

var error: boolean);

flushstrlngtable{

rootcontext: contexttag;

var error: boolean);

geterrorflags(

var errorflags: errorset);

geterrtext(

errortype: syerrorkind;

var errtxt: systring);

inltstrlngmanager;

****** String Manipulation Routines ******

insertstrlng(

name: systring;

context: eontexttag;

vat newstring: stringtag;

vat found: boolean;

var error: boolean);

retrlevestrlng(

string: stringtag;

var name: systring;

var error: boolean);

ioeatestrlng(

SAGA 7/17/85

STRING (3)

STRING(3) UNIX Programmer's Manual

name:

context:

var string:
var found:

var error:

systring;

contexttag;
stringtag;

boolean;

boolean);

retrlevestrlnglength(

string:

var error:

stringtag;

boolean) : integer;

deletestrlng(
string:

vat error:

,Not Active*

strlngtag;

boolean);

eomparestrlng(
strtgl:

strtg2:
var error:

stringtag;

stringtag;

boolean) : sycompareresult;

comparestrlngbystrlng(
strl:

strtg2:
var error:

systring;

stringtag;

boolean) : sycompareresult;

getstrlngtype(

string:

var strlngtype:
var error:

stringtag;

integer;

boolean);

setstrlngtype(
string:

stringtype:

var error:

stringtag;

integer;

boolean);

gettagfrag(
string: stringtag) : sytagfragment;

buildtag(
permld:

tagfrag:

sypermidindex;

sytagfragment) : stringtag;

sycompareresult ---- (strlt, streq, strgt) ;

****** Systring Utility Routines ****.**

makestrlng(
8:

var sy:

eoncatsystrlng(
vat result:

charbuf ;

systring) ;

systring;

SAGA 7/17/85

STRING (3)

I
I

I
I

I
I

I
I

I
I
I

I

I

I
I
I
I

I

I

!

I

i

I
l

I
l

I
li

i

I
l

l
I

I
I

l
I
I

l

STRING (3) UNIX Programmer's Manual STRING (3)

first:

second:
systring;

systring) ;

int2strlng(
i : integer;

var result: systring;

wrsystr(
var out : text;

s : systring) ;

DESCRIPTION

These routines constitute the SAGA string manager. The lnltstringmanager routine must be
called first since it is the Pascal "solution" to compile time initialization.

The openstrlngtable, createstrlngtable, flushstrlngtable, and elosestrlngtable procedures

provide the file system level access to a string table. The file system procedures append ".str" to

the name provided and attempt the operation implied by their name. You can not open or Great

the same file (by path name) twice, or two files with the same permanent id. All four of the opera-

tions can fail due to file system access failure.

The concept of "contexttag" pertains more to the symbol manager than the string manager, and is
used here for comparability. The context tags actually used may be either the root context

' • JI AI _resumes by ihe and ally U_nererea_es_rlng_aDm ac[,ive cun_ext fur _a_opens_ring_aDm, or
symbol table with the same permanent id. The permanent id is used to distinguish between

different string tables. It is encoded in both "contexttags" and "stringttags" so that a tag uniquely

identifiers a particular string throughout the system. The mechanism for assigning permanent ids
is described in AllocPermid.

The string manager deals with systrlng(s) which are a record with the following fields:

start: 1..126;

count: 0..126;

chars: array [1.126] of char;

Thus if the chars contains "This is a test", with start_-_4 and count----5 then the string equals "s is

". The procedures makestring, concatsystring, int2systring, and wrsystr are auxUary routines to

help manipulate systrings. Note: makestring('testlng 1 2 3', s) works fine, but trailing spaces are

lost. Wrsystr writes the string to the specified file.

The lnsertstrlng is the only way to put strings into the symbol table. The inserted string's tag is

returned in new string. NOTE: if the string exists found is set, and NO error is generated, con-

trary to earlier versions. The retrlevestrlng routine is the inverse. It is of course an error to try
to retrieve a string associated with an un-opened string table, or a string which doesn't exist. The

retrlevestrlnglength is faster than retrievestring, used mostly by the editor for screen refresh.

The deletestring procedure exists, but is disabled because it is not possible to inhibit copying of
editor pointers. The getstrlngtype and setstrlngtype permit an integer to be stored with each

string for classification purposes (reserved words, function/procedure/variable classification ...).

The geterrorflags and geterrortext routines are used by both the string and symbol table

managers. They should be called whenever the "error" parameter is set upon procedure return.

The gettagfrag and buildtag routines provide support for optimizations used by the editor. The

sytagfragment is a 2 byte quantity, and the strlngtag is 4 bytes. This saves some space in the
parse tree node.

DIAGNOSTICS

SAGA 7/17/85 3

STRING(3) UNIXProgrammer'sManual STRING(3)

FILES

name.str

SEE ALSO

symbol(3), AllocPermid(3)

IDENTIFICATION

beshers@uiucdcs

BUGS
126 is too small.

SAGA 7/17/85 4

